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Abstract. An emerging problem in network analysis is ranking network
nodes based on their relevance to metadata groups that share attributes
of interest, for example in the context of recommender systems or node
discovery services. For this task, it is important to evaluate ranking algo-
rithms and parameters and select the ones most suited to each network.
Unfortunately, large real-world networks often comprise sparsely labelled
nodes that hinder supervised evaluation, whereas unsupervised measures
of community quality, such as density and conductance, favor structural
characteristics that may not be indicative of metadata group quality. In
this work, we introduce LinkAUC, a new unsupervised approach that
evaluates network node ranks of multiple metadata groups by measuring
how well they predict network edges. We explain that this accounts for
relation knowledge encapsulated in known members of metadata groups
and show that it enriches density-based evaluation. Experiments on one
synthetic and two real-world networks indicate that LinkAUC agrees
with AUC and NDCG for comparing ranking algorithms more than other
unsupervised measures.

1 Introduction

It is well-known that network nodes can be organized into communities [1,2,3,4]
identified through either ground truth structural characteristics or shared node
attributes [5,6,7]. A common task in network analysis is to rank all network
nodes based on their relevance to such communities, especially of the second
type [8,9], which are commonly referred to as metadata groups. Ranking nodes
is particularly important in large social networks, where metadata group bound-
aries can be vague [10,11]. Node ranks can also be used by recommender systems
that combine them with other characteristics, in which case it is important to
be of high quality across the whole network. Some of the most well-known algo-
rithms that discover communities with only a few known members also rely on
ranking mechanisms and work by thresholding their outcome [12,13].

Node ranks for metadata groups are a form of recommendation and their
quality is usually (e.g. in [14]) evaluated with well-known recommender system
measures [15,16,17], such as AUC and NDCG. Since calculating these measures
requires knowledge of node labels, the efficacy of ranking algorithms needs be
demonstrated on labeled networks, such as those of the SNAP repository1. How-

1https://snap.stanford.edu/data/

https://snap.stanford.edu/data/
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ever, different algorithms and parameters are more suited to different networks,
for example based on how well their assumptions match structural or metadata
characteristics. At the same time, large real-world networks are often sparsely
labeled, prohibiting supervised evaluation. In such cases, there is a need to eval-
uate ranking algorithms on the network at hand using unsupervised procedures.

A first take on unsupervised evaluation would be to generalize traditional
structural community measures, such as density [18], modularity [19] and con-
ductance [20], to support ranks. However, these measures are designed with
structural ground truth communities in mind and often fail to assess hierarchi-
cal dependencies or other meso-scale (instead of local) features [6,11,21] that may
characterize metadata groups. To circumvent this problem, we propose utilizing
the network’s structure and the existence of multiple metadata groups; under
the assumption that network edges are influenced by node metadata similarity
[6], a phenomenon known as homophily in social networks [22], we assess the
quality of ranks for multiple metadata groups based on their ability to predict
network edges. We show that this practice enriches density-based evaluation and
that it agrees with supervised measures better than other unsupervised ones.

2 LinkAUC

The main idea behind our approach is that, if there is little information to help
evaluate node ranks, we can evaluate other related structural characteristics
instead. To this end, we propose using node rank distributions across metadata
groups to derive link ranks between nodes. Link ranks can in turn be evaluated
through their ability to predict the network’s edges.

Fig. 1. Proposed scheme for evaluating ranking algorithms. Lighter colored nodes have
higher ranks and lighter colored edges have lower link ranks.

An overview of the proposed scheme is demonstrated in Figure 1. In this
section, we first justify why we expect node rank quality to follow link rank
quality (Subection 2.1) and formally describe the evaluation process of the lat-
ter using AUC (Subsection 2.2). We then show that link rank quality enriches
density-based evaluation (Subsection 2.3).
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2.1 Link Ranks

Let ri be vectors whose elements rij estimate the relevance of network nodes j
to metadata groups i = 1, . . . , n. Motivated by latent factor models for link pre-
diction [23] and collaborative filtering [24], we consider R = [r1 . . . rn

]
a matrix

factorization of the network. Its rows Rj = [r1j . . . rnj ] represent the distribu-
tion of ranks of network nodes j across metadata groups. Following the principles
of previous link prediction works [25,26], if network construction is influenced
predominantly by structure-based and metadata-based characteristics, this fac-
torization can help predict network edges by linking nodes with similar rank
distributions. We calculate the similarities of rank distributions between nodes
j, k using the dot product2 as M̂jk = Rj ·Rk. These form a matrix of link ranks:

M̂ = RRT (1)

Accurate link prediction using link ranks implies good metadata group rep-
resentations. To empirically understand this claim, let us consider ranking al-
gorithms that can be expressed as network filters f(M) =

∑∞
n=0 anM

n [27] of
the network’s adjacency matrix M , where an are the weights placed on random
walks of length n. For example, personalized PageRank and Heat Kernels arise
from exponentially degrading weights and the Taylor expansion coefficients of
an exponential function respectively. If applied on query vectors qi, where qij are
proportional to probabilities that nodes j belong to metadata groups i, network
filters produce ranks ri = f(M)qi of how much nodes pertain to the metadata
groups. Organizing multiple queries into a matrix Q = [q1 . . . qn]:

R = f(M)Q⇒ M̂ = f(M)QQT fT (M) (2)

This is a quadratic form of f(M) around the kernel QQT and, as such,
propagates link ranks between queries to the rest of link candidates. Therefore,
if queries adequately predict the links between involved query nodes and link
ranks can predict the network’s edges, then the algorithm with filter f(M) is a
good rank propagation mechanism. At best, queries form an orthonormal basis
of ranks QQT = I and this process can express any symmetric link prediction
filter [25,26,28] by decomposing it to f(M)fT (M).

2.2 Link Rank Evaluation using AUC

When evaluating link ranks, it is often desirable to exclude certain links, such as
withheld test edges or those absent due to systemic reasons (e.g. users may not be
allowed to befriend themselves in social networks). To model this, we devise the
notion of a network group that uses a binary matrix M to remove non-comparable
links of the network’s adjacency matrix M by projecting the latter to M �M,
where � is the Hadamard product performing elementwise multiplication. For

2Cosine similarity would arise by a fixed-flow assumption of the ranking algorithm
that performs row-wise normalization of R before the dot product.
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example, network groups of zero-diagonal networks correspond to M = 1 − I,
where 1 are matrices of ones and I identity matrices.

To help evaluate link ranks M̂ against a network with adjacency matrix M
within a network group M, we introduce a transformation vecM(M) that creates
a vector containing all elements of M for which M 6= 0 in a predetermined order.
Then, link ranks can be evaluated by comparing vecM(M̂) with vecM(M).

A robust measure that compares operating characteristic trade-offs at dif-
ferent decision thresholds is the Area Under Curve (AUC) [29], which has been
previously used to evaluate link ranks [26]. When network edges are not weighted,
if TPR(θ) and FPR(θ) are the true positive and false positive rates of a decision

threshold θ on vecM(M̂) predicting vecM(M), the AUC of link ranks becomes:

LinkAUC =

∫ ∞
−∞

TPR(θ)FPR′(θ) dθ (3)

This evaluates whether actual linkage is assigned higher ranks across the network
[30] without being affected from edge sparsity. These properties make LinkAUC
preferable to precision-based evaluation of link ranks, which assesses the correct-
ness of only a fixed number of top predictions [26].

2.3 Relation to Rank Density

The density of a network is defined as the portion of edges compared to the
maximum number of possible ones [31,32]. Using the notion of volume vol(M)
to annotate the number of edges in a network with adjacency matrix M , the den-

sity of its projection inside the network group M becomes DM(M) = vol(M�M)
vol(M) .

We similarly define rank density by substituting the volume with the expected
volume vol(M, r) of the fuzzy set of subgraphs arising from ranks being propor-
tional to the probabilities that nodes are involved in links:

vol(M, r) = Ev∼r
[
vTMv

]
=
rTMr

‖r‖21

⇒ DM(M, r) =
vol(M �M, r)

vol(M, r)
=
rT (M �M)r

rTMr

(4)

where ‖ · ‖1 is the L1 norm, calculated as the sum of vector elements, and v are
binary vectors of vertices sampled with probabilities r.

We first examine the qualitative relation between link ranks and rank density
for a single metadata groupR = r1. Annotating asm ≥ θ the vectors arising from

binary thresholding on the elements of m = vecM(M̂)

‖vecM(M̂)‖1
and selecting thresholds

θ[k] that determine the top-k link ranks up to all K link candidates (θ[K] = 0):

m =

K−1∑
k=1

(m ≥ θ[k])(θ[k]− θ[k + 1])

⇒ DM(M, r1) =
vecTM(M)vecM(M̂)

‖vecM(M̂)‖1
=

∫ ∞
−∞

TP (θ)P ′(θ)dθ
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where TP and P denote the number of true positive and positive number of
thresholded link ranks respectively. At worst, every new positive link after a
certain point would be a false positive. Using the big-O notation this can be

written as ∂FPR(θ)
∂P (θ) ∈ O(1) and hence:

LinkAUC ∈ O
(
DM(M, r1)

)
(5)

We next consider the case where discovered ranks form non-overlapping meta-
data groups, i.e. each node has non-zero rank only for one group. This may
happen when query propagation stops before it reaches other metadata groups.
Annotating M̂i = rir

T
i , for non-overlapping ranks ri ·rj = 0 for i 6= j, we rewrite

(1) as M̂ =
∑
i M̂i ⇒ vecM(M̂) =

∑
i vecM(M̂i), similarly to before:

LinkAUC ∈ O
(∑

i

DM(M, ri)vol(M, ri)‖ri‖21
)

This averages group densities and weights them by vol(M, ri)‖ri‖21. Hence, when
metadata groups are non-overlapping, high LinkAUC indicates high rank density.

Finally, for overlapping metadata groups, LinkAUC involves inter-group links
in its evaluation. Since averaging density-based evaluations across groups ignores
these links, LinkAUC can be considered an enrichment of rank density in the
sense that it bounds it when metadata groups do not overlap but accounts for
more information when they do.

3 Experiments

To assess the merit of evaluating node ranks using LinkAUC, we devise a series
of experiments where we test a number of different algorithms on several ranking
tasks of varying degrees of difficulty across labeled networks. We use the ranks
produced by these experiments to compare various unsupervised measures with
supervised ones; the latter form the ground truth unsupervised measures need
reproduce, but would not be computable if node labels were sparse or missing.

For every network, we start with known binary vectors ci, whose elements
cij show whether nodes j are members of metadata groups i. We use a uniform
sampling process U to withhold a small set of evaluation nodes evali ∼ U(ci, 1%)
and edges (evali × evali)�M that -by merit of their small number- do not sig-
nificantly affect the ranking algorithm outcomes. We also procure varied length
query vectors qi ∼ U(ci − evali, f) that serve as inputs to the ranking algo-
rithms, where their relative size compared to the group is selected amongst
f ∈ {0.1%, 1%, 10%}. Depending on whether query nodes are adequately many
or too few, we expect algorithms to encounter high and low difficulty respectively.

3.1 Networks

Experiments are conducted on three networks; a synthetic one constructed through
a stochastic block model [33] and two real-world ones often used to evaluate
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metada group detection; the Amazon co-purchasing [34] and the DBLP author
co-authorship networks. These networks were selected on merit of being fully la-
beled, hence enabling supervised evaluation to serve as ground truth. They also
comprise multiple metadata groups and unweighted edges needed for LinkAUC.

The stochastic block model is a popular method to construct networks of
known communities [35,36], where the probability of two nodes being linked is
determined by which communities they belong to. Our synthetic network uses
the randomly generated 5 × 5 block probability matrix of Figure 2 with blocks
of 2K-5K nodes. The Amazon network comprises links between frequently co-
purchased products3 that form communities based on their type (e.g. Book,
CD, DVD, Video). We use the 2011 version of the DBLP dataset4, which com-
prises 1.6M papers from the DBLP database, from which we extracted an author
network based on co-authorship relations. In this network, authors form over-
lapping metadata groups based on academic venues (journals, conferences) they
have published in. To experiment with smaller portions of query nodes and limit
the running time of experiments, we select only the metadata groups with ≥ 5K
nodes for the real-world networks. A summary of these is presented in Table 1.

1 2 3 4 5

1

2

3

4

5

0.0050 0.0042 0.0007 0.0052 0.0008

0.0042 0.0057 0.0041 0.0015 0.0065

0.0007 0.0041 0.0033 0.0003 0.0004

0.0052 0.0015 0.0003 0.0049 0.0005

0.0008 0.0065 0.0004 0.0005 0.0055

Block Model

0.001

0.002

0.003

0.004

0.005

0.006

Fig. 2. Stochastic block model used to cre-
ate the synthetic network.

Network Nodes Edges Groups

Synthetic 15K 0.4M 5
Amazon [34] 0.5M 1.8M 4
DBLP [37] 1.0M 11.3M 52

Table 1. Networks and the number of
metada groups used in experiments.

3.2 Ranking Algorithms

We use both heuristic and established algorithms to rank the relation of network
nodes to metadata groups. Our goal is not to select the best algorithm but to
obtain ranks with many different methods and then use these ranks to compute
the evaluation measures to be compared. The considered algorithms are:
PPR [12,38]. Personalized PageRank with symmetric matrix Laplacian nor-
malization arising from a random walk with restart strategy. It iterates ri ←
aD−1/2MD−1/2ri + (1− a)qi, where D is the diagonal matrix of node degrees.
Throughout our experiments, we select the well-performing parameter a = 0.99.
PPR+Inflation [13]. Adds all neighbors of the original query nodes to the
query to further spread PPR.
PPR+Oversampling [39]. Adding nodes with high PPR ranks to the query
vector before rerunning the algorithm.

3https://snap.stanford.edu/data/amazon-meta.html
4DBLP-Citation-network V4 from https://aminer.org/citation

https://snap.stanford.edu/data/amazon-meta.html
https://aminer.org/citation
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HK [40]. Heat Kernel ranks obtained through an exponential degradation filter

ri = e−t
(∑N

k=0
tk

k! (D
−1/2MD−1/2)k

)
qi. This places higher weights on shorter

paths instead of uniformly spreading them across longer random walks. Hence,
it discovers denser local structures at the cost of not spreading ranks too much.
We selected t = 5 and stopped iterations when (D−1/2MD−1/2)kqi converged.
HPR. A heuristic adaptation of PPR that borrows assumptions of heat kernels
to place emphasis on short random walks ri ← t

ka(D−1/2MD−1/2 − I)ri + (1−
a)qi, where k is the current iteration, t = 5 and a = 0.99.

3.3 Measures

The following measures are calculated for the node ranks of metadata groups
produced in each experiment. We remind that, when network labels are sparse,
supervised measures that serve as the ground truth of evaluation may be in-
applicable. Unsupervised measures other than LinkAUC are computed on the
training edges, as the sparsity of withheld group members evali does not allow
meaningful structural scores. LinkAUC, on the other hand is applicable regard-
less of the evaluation edge set’s sparsity. To avoid data overlap between rank
calculation and evaluation, which could overestimate the latter, supervised mea-
sures and LinkAUC use only the test group members and edges.

Unsupervised Measures
Conductance - Compares the probability of a random walk to move outside a
community vs. to return to it [41]. Using the same probabilistic formulation as
for rank density we define rank conductance:

φM(M, r) =
rT (M �M)(C − r)

rT (M �M)r
(6)

where C = 1 is a max-probability parameter. (Comparisons are preserved for
any value.) Lower conductance indicates better community separation.
Gap Conductance - Conductance of binarily cutting the network on the maximal
percentage gap between

rij
degree(j) for each community i [42,43]. We use this as

an alternative to sweeping strategies [12,13], which took too long to run.
Density - The rank-based extension of density in (4).
LinkAUC - AUC of links ranks calculated through (1), where columns are di-
vided with their maximal value and then each node’s row representation is L2-
normalized, making link ranks represent cosine similarity between edge nodes.
This is our proposed unsupervised measure.

Supervised Measures (Ground Truth)
NodeAUC - AUC of node ranks, averaged across metadata groups i.
NDCG - Normalized discounted cumulative gain across all network nodes. For
this non-parametric statistic, ranks derive ordinalities ord[j] for nodes j (i.e.
the highest ranked node is assigned ord[j] = 1). For each metadata group i,
assigning to nodes j relevance scores of 1 if they belongs to it and 0 otherwise:

NDCGi =

∑
j:j∈evali 1/log2(ord[j] + 1)∑|evali|

c=1 1/log2(c+ 1)
(7)
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NDCG is usually used to evaluate whether a fixed top-k nodes are relevant to the
metadata group. However, we are interested in evaluating the relevant nodes of
the whole network and hence we make this measure span all nodes. This makes it
similar to AUC in that values closer to 1 indicate that metadata group members
are ranked as more relevant to the group compared to non-group members. Its
main difference is that more emphasis is placed on the top discoveries.

3.4 Results

In Figure 3 we present the outcome of evaluating different algorithms on the var-
ious experiment setups, i.e. tuples of networks, seed node fractions and ranking
algorithms. Each point corresponds to a different unsupervised (vertical axes) -
supervised (horizontal axes) measure pair calculated for a different experiment
setup (i.e. combination of seed node sizes and ranking algorithms) and is ob-
tained by averaging the measures across 5 repetitions of the setup. Unsupervised
measures are considered to yield descriptive evaluations when they correlate to
supervised ones for the same network (each network is involved in 15 experiment
setups arising from the combination of |f | = 3 different seed node sizes with one
of the 5 different ranking algorithms).

We can see that LinkAUC is the unsupervised measure whose behavior most
closely resembles that of the supervised ones. In particular, Table 2 shows that
LinkAUC has a strong positive correlation with NodeAUC and a positive cor-
relation with NDCG for all three networks, outperforming the other metrics in
all but one experiments. To make sure that these findings cannot be attributed
to non-linear relations with other measures, we confirm them using both Pear-
son and Spearman correlation, where the latter is a non-parametric metric that
compares the ordinality of measure outcomes. The slightly weaker correlation of
LinkAUC with NDCG can be attributed to the latter’s tendency to place more
emphasis on the top predictions, which makes it overstate the correctness of rank
quality compared to AUC when the rest of ranks are inaccurate.

Looking at the other unsupervised measures, fuzzy definitions of conduc-
tance and density sometimes degrade for higher NodeAUC values. This can be
attributed to these metrics measuring local-scale features, which are not always
a good indication of the quality of larger metadata groups. It must be noted
that gap conductance also exhibits strong correlation with the supervised mea-
sures on the real-world networks. However, especially for the synthetic network,
it frequently assumes a value of 1 that reflects its inability to discover clear-cut
boundaries. This sheds doubt on the validity of using it for evaluating ranks in
new networks, since similar structural deficiencies can render it uninformative.

4 Conclusions and Future Work

In this work we proposed a new unsupervised procedure that evaluates node
ranks of multiple metadata groups based on how well they predict network edges.
We explained the intuitive motivation behind this approach and experimentally
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Fig. 3. Scatter plots and least square lines of unsupervised vs. supervised measures.
Each point corresponds to a different experiment setup.
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Pearson Correlation Spearman Correlation
Synth Amazon DBLP Synth Amazon DBLP

with NodeAUC

Conductance -27% 14% 25% 1% 24% 5%
Gap Cond/nce -28% -67% -70% -23% -72% -88%
Density 58% -22% -59% 55% 6% -45%
LinkAUC 84% 92% 84% 85% 95% 90%

with NDCG

Conductance -23% -26% 40% 1% -3% -9%
Gap Cond/nce -19% -69% -71% -19% -68% -85%
Density 38% -63% -74% 45% -21% -75%
LinkAUC 56% 65% 84% 71% 85% 88%

Table 2. Correlations between unsupervised and supervised measures. The strongest
correlations for each dataset are bolded.

showed that it closely follows supervised rank evaluation across a number of dif-
ferent experiments, many of which are inadequately evaluated by other unsuper-
vised community quality measures. Based on our findings, our approach can be
a better alternative to existing rank evaluation strategies in unlabeled networks
whose metadata propagation mechanisms are unknown. This indicates that net-
work structure and awareness of multiple metadata groups are two promising
types of ground truth that can help evaluate metadata group ranks.

In the future, we are interested in performing experiments across more net-
works and compare our approach with additional unsupervised measures.
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26. L. Lü and T. Zhou, “Link prediction in complex networks: A survey,” Physica A:
statistical mechanics and its applications, vol. 390, no. 6, pp. 1150–1170, 2011.
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